Experimental Practices of Chemistry
DOI:
https://doi.org/10.56117/resbenq.2024.v5.e052402Keywords:
History and philosophy of chemistry. Chemical transformations. Chemical practices. Scientific objects. Analysis and synthesisAbstract
Disciplinary knowledge is always connected to a social context of transmission and to a social group, in this case the chemical community, which reproduces itself. For this reason, what we currently call chemistry, both academic and industrial, can only be understood taking into account the great changes, here identified as chemical transformations, that their practices have had throughout history. Exemplifying the learning difficulties of these practices due to the confusion between scientific objects and chemical formulas, the importance of experimental practices is discussed, identifying that "in terms of teaching chemistry, the biggest deception that can be incurred is that of believing that you can learn chemistry on the blackboard or on paper without the corresponding experimentation”.
References
Agazzi, E. (2019). La objetividad científica y sus contextos. Fondo de Cultura Económica-UP.
Arabatzis, T. (2008). “Experimenting on (and with) Hidden Entities: The Inextricability of Representation and Intervention”. In U. Feest, H-J. Rheinberger, J. Schickore, F. Steinle (eds.) Generating Experimental Knowledge. Max Plank Institute for the History of Science.
Bachelard, G. (1976). El materialismo racional. Paidós.
Bensaude-Vincent, B., Loeve, S., Nordmann, A., Schwarz, A. (2011). Matters of interest: The objects of Research in Science and Technoscience, Journal of General Philosophy of Science, 42, 365-383.
Baird, D. (2004). Thing knowledge. A philosophy of scientific instruments. University of California Press.
Bijker W.E. (1993).“The Social Construction of Bakelite: Towards a theory of Invention”. In W. E. Bijker, T. P. Hughes, T. J. Pinch (eds) The Social Construction of Technological Systems. New Directions in the Sociology and History of Technology. MIT Press.
Cerruti L. (1998). Chemicals as Instruments. A language game, HYLE -An International Journal for the Philosophy of Chemistry, 4, 36-61.
Chalmers, A., (2009). The scientist’s atom and the philosopher’s stone. How Science Succeeded and Philosophy Failed to Gain Knowledge of Atoms. Springer.
Chamizo, J.A., (2023). Filosofía de la química II. Sobre el estilo de pensamiento de las prácticas químicas, Educación Química, 34,16-35.
Chamizo, J.A., (2022). Las prácticas químicas a través de sus transformaciones, CRÍTICA, Revista Hispanoamericana de Filosofía, 54, 57-82.
Chamizo, J.A., (2021). La química como un sistema de prácticas. Una alternativa para su enseñanza, EduQ (Sociedad Catalana de Química), 29, 12-18.
Chamizo, J.A., (2019). About continuity and rupture in the history of Chemistry: The Fourth Chemical Revolution (1945-1966), Foundations of Chemistry, 21, 11-29.
Chamizo, J.A., (2017). The Fifth Chemical Revolution: 1973-1999, Foundations of
Chemistry, 19, 157-179.
Chamizo, J.A., (2014). The Role of Instruments in Three Chemical’ Revolutions, Science & Education, 23, 955–982.
Chamizo, J.A., (2013). Technochemistry: One of the chemist’ way of knowing.
Foundations of Chemistry, 15, 157–170.
Chang, H. (2004). Inventing Temperature. Measurement and Scientific Progress. Oxford University Press.
Chang, H. (2011). The Persistence of Epistemic Objects Through Scientific Change.
Erkenntnis, 75, 413–429.
Daston, L. (ed) (2014). Biografías de los objetos científicos. La cifra.
Fernández-González, M. (2013) Idealization in Chemistry: Pure Substance and
Laboratory Product, Science & Education, 22, 1723-1740.
Giral, G. (1969). Enseñanza de la Química Experimental. Monografía 6. OEA.
Hacking, I.(1983). Representing and intervening. Introductory topics in the philosophy of natural sciences. Cambridge University Press.
Harre R. (2004). Modellng: Gateway to the Unknown. Elsevier.
Jensen, W., (1998). One chemical revolution or three?, Journal of Chemical Education, 75, 961–969.
Kuhn, T., (1971). La Estructura de las Revoluciones Científicas. Fondo de Cultura
Económica.
Kuhn, T., (1992). The Trouble with the Historical Philosophy of Science. Robert and Maurine Rothschild Distinguished Lecture, An Occasional Publication of the Department of History, Harvard University.
Llanos E.J., Leal W., Luu, D.H., Jost J., Stadler P.F. y Restrepo G., (2019). Exploration of the chemical space and its three historical regimes, PNAS, 116, 12660-12665.
Llored J.P. (ed) (2013). The Philosophy of Chemistry: Practices, Methodologies, and Concepts. Cambridge Scholars.
Martínez, S.F. & Huang, X. (2015). Hacia una filosofía de la ciencia centrada en prácticas. Bonilla Artigas-Instituto de Investigaciones Filosóficas-UNAM.
Morris, P.J.T. (ed.), (2002). From Classical to Modern Chemistry. The Instrumental
Revolution. RSC-Science Museum-CHF.
Nieto, C. & Chamizo, J.A., (2013). La Enseñanza Experimental de la Química. Las experiencias de la UNAM. Facultad de Química-UNAM. Se puede acceder gratuitamente en: https://librosoa.unam.mx/handle/123456789/2803
Pickering, A. (1989). "Living in the Material World: on realism and experimental
practice”. In D. Gooding , T.J. Pinch, and S. Schaffer (eds) The uses of experiment. Cambridge University Press.
Powers,J.C. (2016). Inventing Chemistry. Herman Boerhaave and the Reform of the
Chemical Arts. The University of Chicago Press.
Rocke A.J., (1993). "The quiet revolution of the 1850s: Social and Empirical Sources of Scientific Theory”. In S.H. Mauskopf (ed) Chemical Sciences in the Modern World. University of Pennsylvania Press.
Seeman, J. (2023). Revolutions in science, revolutions in chemistry, Foundations of Chemistry, 25, 321-335
Seeman, J. (2023a). Revolutions in Chemistry: Assessment of Six 20th Century Candidates (The Instrumental Revolution; Huckel Molecular OrbitalTheory; Hückel’s 4n + 2 Rule; the Woodward− Hoffmann Rules; Quantum Chemistry; and Retrosynthetic Analysis, JACS Au 3, 2378-2401.
Simon, J. (2012). The production of purity as the production of knowledge, Foundations of Chemistry, 14, 83-96.
van Lunteren, F. (2023). “The laboratory Ethos, 1850-1900”. In K. van Berkel, E. Homburg (eds), The Laboratory Revolution and the Creation of the Modern University, 1830-1940. Amsterdam University Press.
Wray K.W., (2018). The atomic number revolution in chemistry: a Kuhnian analysis, Foundations of Chemistry, 20, 209-217.
Published
Issue
Section
Licença Creative Commons
Todas as publicações da Revista da Sociedade Brasileira de Ensino de Química estão licenciadas sob licença Creative Commons Attribution 4.0 International License. (CC BY 4.0).
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantêm os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attributionque permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho on-line(ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).